Fast Stereo Matching using Adaptive Window based Disparity Refinement
نویسندگان
چکیده
Aiming at the trade-off between accuracy and efficiency in current local stereo matching, a fast stereo matching method based on adaptive window is proposed. The census transform combined with absolute differences (AD) is used for matching cost initialization. Then an iterative cost aggregation based on exponential step adaptive weight (ESAW) is adopted to improve the parallelism and execution efficiency. In disparity refinement stage, an adaptive window based on pixel’s color similarity and Euclidean distance is built for each unreliable point. Then the unreliable points are further classified as ‘occlusion’ and ‘mismatch’, and different refinement strategies are taken for different classifications. Finally, the proposed method is optimized with compute unified device architecture (CUDA) and evaluated on graphic processor. The experiment results show that the proposed method is the most accurate among the real-time stereo matching methods listed on the Middlebury stereo benchmark.
منابع مشابه
Optimizing Disparity Candidates Space in Dense Stereo Matching
In this paper, a new approach for optimizing disparity candidates space is proposed for the solution of dense stereo matching problem. The main objectives of this approachare the reduction of average number of disparity candidates per pixel with low computational cost and high assurance of retaining the correct answer. These can be realized due to the effective use of multiple radial windows, i...
متن کاملReal-Time Stereo Matching using Adaptive Window based Disparity Refinement
In this paper, we propose a real-time stereo matching method based on adaptive window, aiming at the trade-off between accuracy and efficiency in current local stereo matching, Considering that the Census transform has good adaptability to image amplitude distortion, but may introduce matching ambiguities in regions with noise or similar local structures, we combine the Census transform with AD...
متن کاملImproved Adaptive-Support Stereo Matching Using Local Features
Stereo matching is a process of estimating the disparity for every pixel in a pair of stereo images. Among the various stereo-matching algorithms, the adaptive supportweight (ASW) approach is the most representative local method that determines the disparity by using statistical correlation within a local support window. In the ASW approach, the degree of correspondence between two pixels withi...
متن کاملImplementing an Adaptive Approach for Dense Stereo-matching
Defining pixel correspondences in stereo-pairs is a fundamental process in automated image-based 3D reconstruction. In this contribution we report on an approach for dense matching, based on local optimization. The approach represents a fusion of state-of-theart algorithms and novel considerations, which mainly involve improvements in the cost computation and aggregation processes. The matching...
متن کاملA Local Iterative Refinement Method for Adaptive Support-Weight Stereo Matching
A new stereo matching algorithm is introduced that performs iterative refinement on the results of adaptive support-weight stereo matching. During each iteration of disparity refinement, adaptive support-weights are used by the algorithm to penalize disparity differences within local windows. Analytical results show that the addition of iterative refinement to adaptive support-weight stereo mat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016